Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 51

Details

Autor(en) / Beteiligte
Titel
Impact of Phenotypic Correction Method and Missing Phenotypic Data on Genomic Prediction of Maize Hybrids
Ist Teil von
  • Crop science, 2018-07, Vol.58 (4), p.1481-1491
Ort / Verlag
The Crop Science Society of America, Inc
Erscheinungsjahr
2018
Quelle
Wiley Online Library All Journals
Beschreibungen/Notizen
  • Phenotypic datasets in plant breeding are commonly incomplete due to missing phenotypic information. The best approach for correcting these datasets for a stage‐wise genomic prediction (GP) is not unanimous in the scientific community. Therefore, this study evaluates a two‐step GP based on different methods of phenotypic correction considering complete and incomplete datasets of maize (Zea mays L.) single crosses. The dataset consists of 325 hybrids evaluated for grain yield and plant height in four sites. Sequential levels of data loss were simulated to the original dataset (from 0 to 30%) to assess the impact of missing information. The prediction was performed by an additive genomic best linear unbiased prediction model (GBLUP) using best linear unbiased estimations (BLUEs), best linear unbiased predictions (BLUPs), and deregressed BLUPs as the response variable. Mean reliability and predictive ability slightly decreased as missing phenotypic information increased, irrespective of the response variable. Regarding phenotypic correction, all methods yielded similar results for these parameters over most missing information percentages. The coincidence of selection between single‐ and two‐stage GP was not systematically affected by response variable across multiple selection intensities, and missing data only led to a minor decrease in coincidence. Therefore, from a breeding standpoint, regardless of phenotypic correction method and missing data level, a similar set of genotypes tend to be selected.
Sprache
Englisch
Identifikatoren
ISSN: 0011-183X
eISSN: 1435-0653
DOI: 10.2135/cropsci2017.07.0459
Titel-ID: cdi_crossref_primary_10_2135_cropsci2017_07_0459
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX