Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 1795
Journal of advanced computational intelligence and intelligent informatics, 2023-07, Vol.27 (4), p.673-682
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Lightweight Bilateral Network for Real-Time Semantic Segmentation
Ist Teil von
  • Journal of advanced computational intelligence and intelligent informatics, 2023-07, Vol.27 (4), p.673-682
Erscheinungsjahr
2023
Beschreibungen/Notizen
  • Herein, a dual-branch semantic segmentation model based on depth-separable convolution and attention mechanism is proposed for the real-time and accuracy requirement of semantic segmentation. The proposed approach overcomes the problems of poor segmentation effect and over-simplification of feature fusion arising from the constant downsample operations in semantic segmentation. The network is divided into spatial detail and semantic information paths. The spatial detail path utilizes a smaller downsample multiplier to maintain resolution and efficiently extract spatial information. The semantic information path is constructed by a non-bottleneck residual unit with dilated convolution; it extracts semantic features. For the feature aggregation problem, the feature-guided fusion module is designed to assign different weights to the parts of the two paths and fuse them to obtain the final output. The proposed algorithm achieves a segmentation accuracy of 69.6% and speed of 70 fps on the Cityscapes dataset, with a model parameter count of only 0.76 M, thus indicating some advantages over recent real-time semantic segmentation algorithms. The proposed method with depth separable convolution and attention mechanism can effectively extract features and compensate for the loss of accuracy caused by downsampling. The experiments demonstrate that the proposed fusion module outperforms other methods in fusing different features.
Sprache
Englisch
Identifikatoren
ISSN: 1343-0130
eISSN: 1883-8014
DOI: 10.20965/jaciii.2023.p0673
Titel-ID: cdi_crossref_primary_10_20965_jaciii_2023_p0673
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX