Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Hierarchical topic modeling with nested hierarchical Dirichlet process
Ist Teil von
Journal of Zhejiang University. A. Science, 2009-06, Vol.10 (6), p.858-867
Ort / Verlag
Hangzhou: Zhejiang University Press
Erscheinungsjahr
2009
Quelle
SpringerLink Journals - AutoHoldings
Beschreibungen/Notizen
This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonparametric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as well as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more fine-grained topic relationships compared to the hierarchical latent Dirichlet allocation model.