Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
IR2V EC: LLVM IR Based Scalable Program Embeddings
Ist Teil von
ACM transactions on architecture and code optimization, 2020-12, Vol.17 (4), p.1-27
Erscheinungsjahr
2020
Quelle
ACM Digital Library
Beschreibungen/Notizen
We propose IR2V
EC
, a Concise and Scalable encoding infrastructure to represent programs as a distributed embedding in continuous space. This distributed embedding is obtained by combining representation learning methods with flow information to capture the syntax as well as the semantics of the input programs. As our infrastructure is based on the Intermediate Representation (IR) of the source code, obtained embeddings are both language and machine independent. The entities of the IR are modeled as relationships, and their representations are learned to form a
seed embedding vocabulary
. Using this infrastructure, we propose two incremental encodings:
Symbolic
and
Flow-Aware
.
Symbolic
encodings are obtained from the
seed embedding vocabulary
, and
Flow-Aware
encodings are obtained by augmenting the
Symbolic
encodings with the flow information.
We show the effectiveness of our methodology on two optimization tasks (Heterogeneous device mapping and Thread coarsening). Our way of representing the programs enables us to use non-sequential models resulting in orders of magnitude of faster training time. Both the encodings generated by IR2V
EC
outperform the existing methods in both the tasks, even while using
simple
machine learning models. In particular, our results improve or match the state-of-the-art speedup in 11/14 benchmark-suites in the device mapping task across two platforms and 53/68 benchmarks in the thread coarsening task across four different platforms. When compared to the other methods, our embeddings are
more scalable
,
is non-data-hungry
, and
has better Out-Of-Vocabulary (OOV) characteristics
.
Sprache
Englisch
Identifikatoren
ISSN: 1544-3566
eISSN: 1544-3973
DOI: 10.1145/3418463
Titel-ID: cdi_crossref_primary_10_1145_3418463
Format
–
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von bX