Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 32

Details

Autor(en) / Beteiligte
Titel
Principles of gait encoding in the subthalamic nucleus of people with Parkinson’s disease
Ist Teil von
  • Science translational medicine, 2022-09, Vol.14 (661)
Erscheinungsjahr
2022
Beschreibungen/Notizen
  • Disruption of subthalamic nucleus dynamics in Parkinson’s disease leads to impairments during walking. Here, we aimed to uncover the principles through which the subthalamic nucleus encodes functional and dysfunctional walking in people with Parkinson’s disease. We conceived a neurorobotic platform embedding an isokinetic dynamometric chair that allowed us to deconstruct key components of walking under well-controlled conditions. We exploited this platform in 18 patients with Parkinson’s disease to demonstrate that the subthalamic nucleus encodes the initiation, termination, and amplitude of leg muscle activation. We found that the same fundamental principles determine the encoding of leg muscle synergies during standing and walking. We translated this understanding into a machine learning framework that decoded muscle activation, walking states, locomotor vigor, and freezing of gait. These results expose key principles through which subthalamic nucleus dynamics encode walking, opening the possibility to operate neuroprosthetic systems with these signals to improve walking in people with Parkinson’s disease. The subthalamic nucleus encodes the initiation, termination, and amplitude of muscle activation, supporting decoding of gait in Parkinson’s disease. Decoding gait deficits Individuals with Parkinson’s disease (PD) experience motor symptoms including tremor, stiffness, and gait disturbances. To better understand the complex regulation of lower limb movements during walking, Thenaisie et al. studied local field potentials (LFPs) in the subthalamic nucleus (STN) and leg muscle activation in patients with PD implanted with deep brain stimulation electrodes. Using a neurorobotic platform based on a dynamometric chair and controlled locomotor tasks, the authors found that the STN encodes the initiation, termination, and amplitude of passive and active leg muscle activation and sensory feedback from the legs. They designed algorithms using STN LFPs to distinguish functional from dysfunctional gait that could detect freezing gait in individuals with PD. Results will help inform future treatment strategies for gait impairments.
Sprache
Englisch
Identifikatoren
ISSN: 1946-6234
eISSN: 1946-6242
DOI: 10.1126/scitranslmed.abo1800
Titel-ID: cdi_crossref_primary_10_1126_scitranslmed_abo1800
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX