Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Monotone vector fields and the proximal point algorithm on Hadamard manifolds
Ist Teil von
Journal of the London Mathematical Society, 2009-06, Vol.79 (3), p.663-683
Ort / Verlag
Oxford University Press
Erscheinungsjahr
2009
Quelle
Wiley Online Library
Beschreibungen/Notizen
The maximal monotonicity notion in Banach spaces is extended to Riemannian manifolds of nonpositive sectional curvature, Hadamard manifolds, and proved to be equivalent to the upper semicontinuity. We consider the problem of finding a singularity of a multivalued vector field in a Hadamard manifold and present a general proximal point method to solve that problem, which extends the known proximal point algorithm in Euclidean spaces. We prove that the sequence generated by our method is well defined and converges to a singularity of a maximal monotone vector field, whenever it exists. Applications in minimization problems with constraints, minimax problems and variational inequality problems, within the framework of Hadamard manifolds, are presented.