Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 21021
IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2019-06, Vol.66 (6), p.1140-1148
2019

Details

Autor(en) / Beteiligte
Titel
Dispersion-Engineered Guided-Wave Resonators in Anisotropic Single-Crystal Substrates-Part I: Concept and Analytical Design
Ist Teil von
  • IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2019-06, Vol.66 (6), p.1140-1148
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2019
Link zum Volltext
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • This paper presents an analytical approach for the implementation of high quality-factor (<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>) resonators with arbitrary cross-sectional vibration mode shapes in anisotropic single-crystal substrates. A closed-form dispersion relation is analytically derived to characterize the dynamics of guided waves in rectangular waveguides. Three categories of waves with propagating, standing-evanescent, and propagating-evanescent dynamics are identified and used for energy localization of acoustic excitations with arbitrary cross-sectional vibration patterns. An analytical design procedure is presented for dispersion engineering of waveguides to realize high-<inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> resonators without the need for geometrical suspension through narrow tethers or rigid anchors. The effectiveness of the dispersion engineering methodology is verified through the development of experimental test vehicles in 20-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>-thick single-crystal silicon substrate with 500-nm aluminum nitride transducers. Various proof-of-concept resonators, representing guided waves with different dispersion types, are presented and compared to highlight the optimum design procedures for <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula> enhancement and spurious mode suppression. Part I of this paper presents the operation principle of guided-wave resonators based on the analytical derivation of dispersion relation followed by a systematic resonator design procedure. Numerical and experimental characterizations for verification of the proposed design procedure and extensive measurement data on proof-of-concept resonators are presented in Part II.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX