Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 72
IEEE transactions on signal processing, 2018-04, Vol.66 (8), p.2041-2054
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Riemannian Optimization and Approximate Joint Diagonalization for Blind Source Separation
Ist Teil von
  • IEEE transactions on signal processing, 2018-04, Vol.66 (8), p.2041-2054
Ort / Verlag
IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • We consider the blind source separation (BSS) problem and the closely related approximate joint diagonalization (AJD) problem of symmetric positive definite (SPD) matrices. These two problems can be reduced to an optimization problem with three key components: the criterion to minimize, the constraint on the solution, and the optimization algorithm to solve it. This paper contains two contributions that allow us to treat these issues independently. We build the first complete Riemannian optimization framework suited for BSS and AJD handling three classical constraints, and allowing to use a large panel of general optimization algorithms on manifolds. We also perform a thorough study of the AJD problem of SPD matrices from an information geometry point of view. We study AJD criteria based on several divergences of the set of SPD matrices, provide three optimization strategies to minimize them, and analyze their properties. Our numerical experiments on simulated and pseudoreal electroencephalographic data show the interest of the Riemannian optimization framework and of the different AJD criteria we consider.
Sprache
Englisch
Identifikatoren
ISSN: 1053-587X
eISSN: 1941-0476
DOI: 10.1109/TSP.2018.2795539
Titel-ID: cdi_crossref_primary_10_1109_TSP_2018_2795539

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX