Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 65614
IEEE transactions on power systems, 2018-11, Vol.33 (6), p.6501-6509
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Modeling, Tuning, and Validating System Dynamics in Synthetic Electric Grids
Ist Teil von
  • IEEE transactions on power systems, 2018-11, Vol.33 (6), p.6501-6509
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • A synthetic network modeling methodology has been developed to generate completely fictitious power system models with capability to represent characteristic features of actual power grids. Without revealing any confidential information, synthetic network models can be shared freely for teaching, training, and research purposes. Additional complexities can be added into synthetic models to widen their applications. Thus, this paper aims to extend synthetic network base cases for transient stability studies. An automated algorithm is proposed to assign appropriate models and parameters to each synthetic generator, according to fuel type, generation capacity, and statistics summarized from actual system cases. A two-stage model tuning procedure is also proposed to improve synthetic dynamic models. Several transient stability metrics are developed to validate the created synthetic network dynamic cases. The construction and validation of dynamics for a 2000-bus synthetic test case is provided as an example. Simulation results are presented to verify that the created test case is able to satisfy the transient stability metrics and produce dynamic responses similar to those of actual system cases.
Sprache
Englisch
Identifikatoren
ISSN: 0885-8950
eISSN: 1558-0679
DOI: 10.1109/TPWRS.2018.2823702
Titel-ID: cdi_crossref_primary_10_1109_TPWRS_2018_2823702

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX