Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 12
IEEE transactions on pattern analysis and machine intelligence, 2016-04, Vol.38 (4), p.627-638
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Adopting Abstract Images for Semantic Scene Understanding
Ist Teil von
  • IEEE transactions on pattern analysis and machine intelligence, 2016-04, Vol.38 (4), p.627-638
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2016
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Relating visual information to its linguistic semantic meaning remains an open and challenging area of research. The semantic meaning of images depends on the presence of objects, their attributes and their relations to other objects. But precisely characterizing this dependence requires extracting complex visual information from an image, which is in general a difficult and yet unsolved problem. In this paper, we propose studying semantic information in abstract images created from collections of clip art. Abstract images provide several advantages over real images. They allow for the direct study of how to infer high-level semantic information, since they remove the reliance on noisy low-level object, attribute and relation detectors, or the tedious hand-labeling of real images. Importantly, abstract images also allow the ability to generate sets of semantically similar scenes. Finding analogous sets of real images that are semantically similar would be nearly impossible. We create 1,002 sets of 10 semantically similar abstract images with corresponding written descriptions. We thoroughly analyze this dataset to discover semantically important features, the relations of words to visual features and methods for measuring semantic similarity. Finally, we study the relation between the saliency and memorability of objects and their semantic importance.
Sprache
Englisch
Identifikatoren
ISSN: 0162-8828
eISSN: 1939-3539, 2160-9292
DOI: 10.1109/TPAMI.2014.2366143
Titel-ID: cdi_crossref_primary_10_1109_TPAMI_2014_2366143

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX