Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 9
IEEE transaction on neural networks and learning systems, 2021-08, Vol.32 (8), p.3471-3483
2021

Details

Autor(en) / Beteiligte
Titel
Context-Aware Learning for Generative Models
Ist Teil von
  • IEEE transaction on neural networks and learning systems, 2021-08, Vol.32 (8), p.3471-3483
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Link zum Volltext
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • This work studies the class of algorithms for learning with side-information that emerges by extending generative models with embedded context-related variables. Using finite mixture models (FMMs) as the prototypical Bayesian network, we show that maximum-likelihood estimation (MLE) of parameters through expectation-maximization (EM) improves over the regular unsupervised case and can approach the performances of supervised learning, despite the absence of any explicit ground-truth data labeling. By direct application of the missing information principle (MIP), the algorithms' performances are proven to range between the conventional supervised and unsupervised MLE extremities proportionally to the information content of the contextual assistance provided. The acquired benefits regard higher estimation precision, smaller standard errors, faster convergence rates, and improved classification accuracy or regression fitness shown in various scenarios while also highlighting important properties and differences among the outlined situations. Applicability is showcased with three real-world unsupervised classification scenarios employing Gaussian mixture models. Importantly, we exemplify the natural extension of this methodology to any type of generative model by deriving an equivalent context-aware algorithm for variational autoencoders (VAs), thus broadening the spectrum of applicability to unsupervised deep learning with artificial neural networks. The latter is contrasted with a neural-symbolic algorithm exploiting side information.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX