Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 10
IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.2277-2286
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
MimickNet, Mimicking Clinical Image Post- Processing Under Black-Box Constraints
Ist Teil von
  • IEEE transactions on medical imaging, 2020-06, Vol.39 (6), p.2277-2286
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2020
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • Image post-processing is used in clinical-grade ultrasound scanners to improve image quality (e.g., reduce speckle noise and enhance contrast). These post-processing techniques vary across manufacturers and are generally kept proprietary, which presents a challenge for researchers looking to match current clinical-grade workflows. We introduce a deep learning framework, MimickNet, that transforms conventional delay-and-summed (DAS) beams into the approximate Dynamic Tissue Contrast Enhanced (DTCE™) post-processed images found on Siemens clinical-grade scanners. Training MimickNet only requires post-processed image samples from a scanner of interest without the need for explicit pairing to DAS data. This flexibility allows MimickNet to hypothetically approximate any manufacturer's post-processing without access to the pre-processed data. MimickNet post-processing achieves a 0.940 ± 0.018 structural similarity index measurement (SSIM) compared to clinical-grade post-processing on a 400 cine-loop test set, 0.937 ± 0.025 SSIM on a prospectively acquired dataset, and 0.928 ± 0.003 SSIM on an out-of-distribution cardiac cine-loop after gain adjustment. To our knowledge, this is the first work to establish deep learning models that closely approximate ultrasound post-processing found in current medical practice. MimickNet serves as a clinical post-processing baseline for future works in ultrasound image formation to compare against. Additionally, it can be used as a pretrained model for fine-tuning towards different post-processing techniques. To this end, we have made the MimickNet software, phantom data, and permitted in vivo data open-source at https://github.com/ouwen/MimickNet.
Sprache
Englisch
Identifikatoren
ISSN: 0278-0062
eISSN: 1558-254X
DOI: 10.1109/TMI.2020.2970867
Titel-ID: cdi_crossref_primary_10_1109_TMI_2020_2970867

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX