Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 1790
IEEE transactions on image processing, 2015-08, Vol.24 (8), p.2565-2578
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Boundary Detection Using Double-Opponency and Spatial Sparseness Constraint
Ist Teil von
  • IEEE transactions on image processing, 2015-08, Vol.24 (8), p.2565-2578
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2015
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Brightness and color are two basic visual features integrated by the human visual system (HVS) to gain a better understanding of color natural scenes. Aiming to combine these two cues to maximize the reliability of boundary detection in natural scenes, we propose a new framework based on the color-opponent mechanisms of a certain type of color-sensitive double-opponent (DO) cells in the primary visual cortex (V1) of HVS. This type of DO cells has oriented receptive field with both chromatically and spatially opponent structure. The proposed framework is a feedforward hierarchical model, which has direct counterpart to the color-opponent mechanisms involved in from the retina to V1. In addition, we employ the spatial sparseness constraint (SSC) of neural responses to further suppress the unwanted edges of texture elements. Experimental results show that the DO cells we modeled can flexibly capture both the structured chromatic and achromatic boundaries of salient objects in complex scenes when the cone inputs to DO cells are unbalanced. Meanwhile, the SSC operator further improves the performance by suppressing redundant texture edges. With competitive contour detection accuracy, the proposed model has the additional advantage of quite simple implementation with low computational cost.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX