Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 193
IEEE transactions on cybernetics, 2017-06, Vol.47 (6), p.1423-1433
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Nonsmooth Penalized Clustering via \ell Regularized Sparse Regression
Ist Teil von
  • IEEE transactions on cybernetics, 2017-06, Vol.47 (6), p.1423-1433
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2017
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • Clustering has been widely used in data analysis. A majority of existing clustering approaches assume that the number of clusters is given in advance. Recently, a novel clustering framework is proposed which can automatically learn the number of clusters from training data. Based on these works, we propose a nonsmooth penalized clustering model via ℓ p (0 <; p <; 1) regularized sparse regression. In particular, this model is formulated as a nonsmooth nonconvex optimization, which is based on over-parameterization and utilizes an ℓ p -norm-based regularization to control the tradeoff between the model fit and the number of clusters. We theoretically prove that the new model can guarantee the sparseness of cluster centers. To increase its practicality for practical use, we adhere to an easy-to-compute criterion and follow a strategy to narrow down the search interval of cross validation. To address the nonsmoothness and nonconvexness of the cost function, we propose a simple smoothing trust region algorithm and present its convergent and computational complexity analysis. Numerical studies on both simulated and practical data sets provide support to our theoretical results and demonstrate the advantages of our new method.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX