Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 65
IEEE transactions on computational imaging, 2022, Vol.8, p.1-16
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Photon-Counting CT Reconstruction With a Learned Forward Operator
Ist Teil von
  • IEEE transactions on computational imaging, 2022, Vol.8, p.1-16
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2022
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Photon-Counting CT is an emerging imaging technology that promises higher spatial resolution and the possibility for material decomposition in the reconstruction. A major difficulty in Photon-Counting CT is to efficiently model cross-talk between detectors. In this work, we accelerate image reconstruction tasks for Photon-Counting CT by modelling the cross-talk with an appropriately trained deep convolutional neural network. The main result relates to proving convergence when using such a learned cross-talk model in the context of second-order optimisation methods for spectral CT. Another is to evaluate the method through numerical experiments on small-scale CT acquisitions generated using a realistic physics model. Using the reconstruction with a full cross-talk model as ground truth, the learned cross-talk model results in a 20 dB increase in peak-signal-to noise ratio compared to ignoring cross-talk altogether. At the same time, it effectively cuts the computation time of the full cross-talk model in half. Furthermore, the learned cross-talk model generalises well to both unseen data and unseen detector settings. Our results indicate that such a partially learned forward operator is a suitable way of modelling data generation in Photon-Counting CT with a computational benefit that becomes more noticeable for realistic problem sizes.
Sprache
Englisch
Identifikatoren
ISSN: 2573-0436, 2333-9403
eISSN: 2333-9403
DOI: 10.1109/TCI.2022.3183405
Titel-ID: cdi_crossref_primary_10_1109_TCI_2022_3183405

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX