Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Hierarchical Discriminative Feature Learning for Hyperspectral Image Classification
Ist Teil von
IEEE geoscience and remote sensing letters, 2016-04, Vol.13 (4), p.594-598
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2016
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
Building effective image representations from hyperspectral data helps to improve the performance for classification. In this letter, we develop a hierarchical discriminative feature learning algorithm for hyperspectral image classification, which is a deformation of the spatial-pyramid-matching model based on the sparse codes learned from the discriminative dictionary in each layer of a two-layer hierarchical scheme. The pooling features achieved by the proposed method are more robust and discriminative for the classification. We evaluate the proposed method on two hyperspectral data sets: Indiana Pines and Salinas scene. The results show our method possessing state-of-the-art classification accuracy.