Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 193
IEEE access, 2019, Vol.7, p.172123-172135
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Graph-Based Clustering via Group Sparsity and Manifold Regularization
Ist Teil von
  • IEEE access, 2019, Vol.7, p.172123-172135
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2019
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Clustering refers to the problem of partitioning data into several groups according to the predefined criterion. Graph-based method is one of main clustering approaches and has been shown impressive performance in many literatures. The core issue of graph-based clustering is how to construct a good adjacency graph. A large number of works employ the sparse representation of data as the similarity measure by ℓ 1 regularization. However, due to the flat nature of the ℓ 1 norm, such methods solve the sparse representation of each data point individually, which do not take into account the global structure of data. To exploit the global and essential structure in data, in contrast to existing methods, we propose to learn a graph with group sparsity. To incorporate more information into the graph, we also use the manifold regularization with adaptive similarity during the process of group sparse self-representation. The resulting model is handled by Alternating Direction Method of Multipliers (ADMM). Further, we employ Iterative Re-weighted Least Squares (IRLS) algorithm and threshold operator to solve the ADMM subproblems. Experimental results on real-world datasets demonstrate the superiority of our method compared to the competing clustering methods.
Sprache
Englisch
Identifikatoren
ISSN: 2169-3536
eISSN: 2169-3536
DOI: 10.1109/ACCESS.2019.2955971
Titel-ID: cdi_crossref_primary_10_1109_ACCESS_2019_2955971

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX