Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Rapid prototyping journal, 2018-10, Vol.24 (7), p.1142-1154
2018

Details

Autor(en) / Beteiligte
Titel
Heterogeneous topology design and voxel-based bio-printing
Ist Teil von
  • Rapid prototyping journal, 2018-10, Vol.24 (7), p.1142-1154
Ort / Verlag
Bradford: Emerald Publishing Limited
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Purpose The purpose of this paper is to present a topology-based tissue scaffold design methodology to accurately represent the heterogeneous internal architecture of tissues/organs. Design/methodology/approach An image analysis technique is used that digitizes the topology information contained in medical images of tissues/organs. A weighted topology reconstruction algorithm is implemented to represent the heterogeneity with parametric functions. The parametric functions are then used to map the spatial material distribution following voxelization. The generated chronological information yields hierarchical tool-path points which are directly transferred to the three-dimensional (3D) bio-printer through a proposed generic platform called Application Program Interface (API). This seamless data corridor between design (virtual) and fabrication (physical) ensures the manufacturability of personalized heterogeneous porous scaffold structure without any CAD/STL file. Findings The proposed methodology is implemented to verify the effectiveness of the approach and the designed example structures are bio-fabricated with a deposition-based bio-additive manufacturing system. The designed and fabricated heterogeneous structures are evaluated which shows conforming porosity distribution compared to uniform method. Originality/value In bio-fabrication process, the generated bio-models with boundary representation (B-rep) or surface tessellation (mesh) do not capture the internal architectural information. This paper provides a design methodology for scaffold structure mimicking the native tissue/organ architecture and direct fabricating the structure without reconstructing the CAD model. Therefore, designing and direct bio-printing the heterogeneous topology of tissue scaffolds from medical images minimize the disparity between the internal architecture of target tissue and its scaffold.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX