Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 49

Details

Autor(en) / Beteiligte
Titel
Scientific evidence and specific context: leveraging large language models for health fact-checking
Ist Teil von
  • Online information review, 2024-09
Erscheinungsjahr
2024
Quelle
Emerald Management 200
Beschreibungen/Notizen
  • Purpose This study aims to evaluate the performance of LLMs with various prompt engineering strategies in the context of health fact-checking. Design/methodology/approach Inspired by Dual Process Theory, we introduce two kinds of prompts: Conclusion-first (System 1) and Explanation-first (System 2), and their respective retrieval-augmented variations. We evaluate the performance of these prompts across accuracy, argument elements, common errors and cost-effectiveness. Our study, conducted on two public health fact-checking datasets, categorized 10,212 claims as knowledge, anecdotes and news. To further analyze the reasoning process of LLM, we delve into the argument elements of health fact-checking generated by different prompts, revealing their tendencies in using evidence and contextual qualifiers. We conducted content analysis to identify and compare the common errors across various prompts. Findings Results indicate that the Conclusion-first prompt performs well in knowledge (89.70%,66.09%), anecdote (79.49%,79.99%) and news (85.61%,85.95%) claims even without retrieval augmentation, proving to be cost-effective. In contrast, the Explanation-first prompt often classifies claims as unknown. However, it significantly boosts accuracy for news claims (87.53%,88.60%) and anecdote claims (87.28%,90.62%) with retrieval augmentation. The Explanation-first prompt is more focused on context specificity and user intent understanding during health fact-checking, showing high potential with retrieval augmentation. Additionally, retrieval-augmented LLMs concentrate more on evidence and context, highlighting the importance of the relevance and safety of retrieved content. Originality/value This study offers insights into how a balanced integration could enhance the overall performance of LLMs in critical applications, paving the way for future research on optimizing LLMs for complex cognitive tasks. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/OIR-02-2024-0111
Sprache
Englisch
Identifikatoren
ISSN: 1468-4527
DOI: 10.1108/OIR-02-2024-0111
Titel-ID: cdi_crossref_primary_10_1108_OIR_02_2024_0111
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX