Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 7

Details

Autor(en) / Beteiligte
Titel
Fungal Transformers: Tracking a Moving Target
Ist Teil von
  • Access microbiology, 2019-11, Vol.1 (9)
Erscheinungsjahr
2019
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • In human hosts, the opportunistic fungal pathogen Candida albicans primarily proliferates in nutrient diverse niches. Environmental condition sensing regulates several fungal cellular features including, but not limited to, metabolism, cell wall elasticity, and virulence. In addition, yeast cell division exposes pathogen-associated molecular patterns (PAMPs) at the cell surface that are known to be immune-stimulatory (e.g. β-glucan). While various host environmental signals and cell wall stressors have been implicated in PAMP exposure in vitro , little is known about the molecular mechanisms that modulate PAMP exposure. We have shown that lactate, an alternative carbon source present in mucosal niches and produced by activated innate immune cells, acts as a signalling molecule to reduce β-glucan exposure. However, it is unknown whether the reduction in β-glucan exposure is the result of PAMP camouflaging by other cell wall components, PAMP modification, or a combination of both processes. We characterized the downstream effectors affecting PAMP exposure in response to different carbon sources and environmental conditions that C. albicans encounters during transit through host niches. Using proteomics, gene deletion analysis, and pharmacological assays, we identified the downstream effectors involved in evading β-glucan recognition by the host pattern recognition receptor, Dectin-1. We can also show microscopic changes to the overall distribution of Dectin-1-recognised β-glucan on the cell surface in response to masking conditions as well as alterations to the interactions of masked cells with phagocytes. Finally, we are examining the impact of PAMP modulation and its inhibition on disease outcomes.
Sprache
Englisch
Identifikatoren
ISSN: 2516-8290
eISSN: 2516-8290
DOI: 10.1099/acmi.byg2019.po0011
Titel-ID: cdi_crossref_primary_10_1099_acmi_byg2019_po0011
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX