Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Effects of Low Progesterone on the Endometrial Transcriptome in Cattle1
Ist Teil von
Biology of reproduction, 2012-11, Vol.87 (5)
Ort / Verlag
Society for the Study of Reproduction, Inc
Erscheinungsjahr
2012
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
The objective of the present study was to determine how low progesterone (P4) affects the endometrial transcriptome, with specific emphasis on those changes that may impact conceptus elongation. Following estrous synchronization and detection (estrus = Day 0, n = 40), heifers were randomly assigned to a control group (n = 12) or a low P4 group (n = 28). Heifers in the low P4 group had consistently lower P4 concentrations compared to controls (P < 0.05). Microarray analysis of endometrial gene expression revealed low P4 altered the expression of 498 differentially expressed genes (DEGs; 215 up- and 283 down-regulated) on Day 7 and 351 DEGs (272 up- and 79 down-regulated) on Day 13. A similar number of temporal changes occurred between Day 7 and Day 13 in both groups (2212 in heifers with normal P4 compared with 2247 in heifers with low P4); of these DEGs, 1278 were common to both groups. Little overlap in the number of DEGs affected by high or low P4 was observed across days. Comparison of the temporal changes that occur during normal estrous cycle progression (i.e., from Day 7 to Day 13) to those affected by altered P4 found significant numbers of genes were modulated by elevated (4157) and decreased (809) P4 alone. Analysis of selected genes by quantitative real-time PCR and in situ hybridization revealed that expression of MEP1B, NID2, and PRSS23 increased on Day 13 compared to Day 7 (P < 0.05) and that the magnitude of increase was significantly diminished in heifers with low P4 compared to controls. MEP1B predominantly localized to the both the superficial and deep glandular epithelium (GE), NID2 localized to the deep GE, whereas PRSS23 localized only to the luminal epithelium. In conclusion, we have determined the global changes in the endometrial transcriptome induced by decreasing the output of P4 from the corpus luteum in vivo using a unique animal model. Placing these data into context with previous data in which P4 was supplemented or elevated after ovulation, we have identified a panel of genes that are truly regulated in the endometrium by circulating concentrations of P4 in vivo and that likely impact conceptus elongation.