Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 167
Journal of mechanics, 2023-01, Vol.39, p.344-351
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Research on fault diagnosis method of turbocharger rotor based on Hu-SVM-RFE
Ist Teil von
  • Journal of mechanics, 2023-01, Vol.39, p.344-351
Ort / Verlag
Oxford University Press
Erscheinungsjahr
2023
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Abstract Several parameters need to be monitored for turbocharger rotor faults and the overlap between different fault parameters as well as the redundancy of data, which leads to increased calculation time and reduced classification accuracy. To improve the recognition rate of turbocharger rotor faults, a recursive elimination method based on the support vector machine-recursive feature elimination (SVM-RFE) combined with improved Hu invariant moments is developed for the axial orbit feature extraction of turbocharger rotor with rotor fault. Firstly, improved Hu-invariant moments are extracted for different rotor fault axis orbits, and then the feature ranking and selection are performed by the SVM-RFE method to filter out the feature combinations with higher classification recognition rates. Then, the feature matrix of the Hu-SVM-RFE algorithm screening combination was identified for classification using each of the three diagnostic algorithms. The results show that the optimal feature subset obtained by the Hu-SVM-RFE method can ensure the richness of the fault information of the turbocharger rotor with small number of features. And, a high classification rate can be obtained with low time consumption in combination with the probabilistic neural network (PNN) algorithm. Therefore, Hu-SVM-RFE feature screening method combined with PNN fault diagnosis technology has high accuracy and efficiency, which is of great significance for online fault identification of the supercharger rotor.
Sprache
Englisch
Identifikatoren
ISSN: 1811-8216
eISSN: 1811-8216
DOI: 10.1093/jom/ufad028
Titel-ID: cdi_crossref_primary_10_1093_jom_ufad028
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX