Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Maximum magnitude estimations of induced earthquakes at Paradox Valley, Colorado, from cumulative injection volume and geometry of seismicity clusters
Ist Teil von
  • Geophysical journal international, 2015-01, Vol.200 (1), p.322-336
Ort / Verlag
Oxford University Press
Erscheinungsjahr
2015
Link zum Volltext
Beschreibungen/Notizen
  • The Paradox Valley Unit (PVU), a salinity control project in southwest Colorado, disposes of brine in a single deep injection well. Since the initiation of injection at the PVU in 1991, earthquakes have been repeatedly induced. PVU closely monitors all seismicity in the Paradox Valley region with a dense surface seismic network. A key factor for understanding the seismic hazard from PVU injection is the maximum magnitude earthquake that can be induced. The estimate of maximum magnitude of induced earthquakes is difficult to constrain as, unlike naturally occurring earthquakes, the maximum magnitude of induced earthquakes changes over time and is affected by injection parameters. We investigate temporal variations in maximum magnitudes of induced earthquakes at the PVU using two methods. First, we consider the relationship between the total cumulative injected volume and the history of observed largest earthquakes at the PVU. Second, we explore the relationship between maximum magnitude and the geometry of individual seismicity clusters. Under the assumptions that: (i) elevated pore pressures must be distributed over an entire fault surface to initiate rupture and (ii) the location of induced events delineates volumes of sufficiently high pore-pressure to induce rupture, we calculate the largest allowable vertical penny-shaped faults, and investigate the potential earthquake magnitudes represented by their rupture. Results from both the injection volume and geometrical methods suggest that the PVU has the potential to induce events up to roughly M W 5 in the region directly surrounding the well; however, the largest observed earthquake to date has been about a magnitude unit smaller than this predicted maximum. In the seismicity cluster surrounding the injection well, the maximum potential earthquake size estimated by these methods and the observed maximum magnitudes have remained steady since the mid-2000s. These observations suggest that either these methods overpredict maximum magnitude for this area or that long time delays are required for sufficient pore-pressure diffusion to occur to cause rupture along an entire fault segment. We note that earthquake clusters can initiate and grow rapidly over the course of 1 or 2 yr, thus making it difficult to predict maximum earthquake magnitudes far into the future. The abrupt onset of seismicity with injection indicates that pore-pressure increases near the well have been sufficient to trigger earthquakes under pre-existing tectonic stresses. However, we do not observe remote triggering from large teleseismic earthquakes, which suggests that the stress perturbations generated from those events are too small to trigger rupture, even with the increased pore pressures.
Sprache
Englisch
Identifikatoren
ISSN: 0956-540X
eISSN: 1365-246X
DOI: 10.1093/gji/ggu394
Titel-ID: cdi_crossref_primary_10_1093_gji_ggu394
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX