Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 157

Details

Autor(en) / Beteiligte
Titel
ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity
Ist Teil von
  • Bioinformatics, 2021-01, Vol.36 (21), p.5159-5168
Ort / Verlag
Oxford University Press
Erscheinungsjahr
2021
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Abstract Motivation Genetically engineering food crops involves introducing proteins from other species into crop plant species or modifying already existing proteins with gene editing techniques. In addition, newly synthesized proteins can be used as therapeutic protein drugs against diseases. For both research and safety regulation purposes, being able to assess the potential toxicity of newly introduced/synthesized proteins is of high importance. Results In this study, we present ToxDL, a deep learning-based approach for in silico prediction of protein toxicity from sequence alone. ToxDL consists of (i) a module encompassing a convolutional neural network that has been designed to handle variable-length input sequences, (ii) a domain2vec module for generating protein domain embeddings and (iii) an output module that classifies proteins as toxic or non-toxic, using the outputs of the two aforementioned modules. Independent test results obtained for animal proteins and cross-species transferability results obtained for bacteria proteins indicate that ToxDL outperforms traditional homology-based approaches and state-of-the-art machine-learning techniques. Furthermore, through visualizations based on saliency maps, we are able to verify that the proposed network learns known toxic motifs. Moreover, the saliency maps allow for directed in silico modification of a sequence, thus making it possible to alter its predicted protein toxicity. Availability and implementation ToxDL is freely available at http://www.csbio.sjtu.edu.cn/bioinf/ToxDL/. The source code can be found at https://github.com/xypan1232/ToxDL. Supplementary information Supplementary data are available at Bioinformatics online.
Sprache
Englisch
Identifikatoren
ISSN: 1367-4803
eISSN: 1460-2059, 1367-4811
DOI: 10.1093/bioinformatics/btaa656
Titel-ID: cdi_crossref_primary_10_1093_bioinformatics_btaa656
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX