Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Eliminating the pollution effect in Helmholtz problems by local subscale correction
Ist Teil von
Mathematics of computation, 2017-05, Vol.86 (305), p.1005-1036
Ort / Verlag
American Mathematical Society
Erscheinungsjahr
2017
Quelle
American Mathematical Society Publications
Beschreibungen/Notizen
We introduce a new Petrov-Galerkin multiscale method for the numerical approximation of the Helmholtz equation with large wave number \kappa in bounded domains in \mathbb{R}^d. The discrete trial and test spaces are generated from standard mesh-based finite elements by local subscale correction in the spirit of numerical homogenization. The precomputation of the correction involves the solution of coercive cell problems on localized subdomains of size \ell H, H being the mesh size and \ell being the oversampling parameter. If the mesh size and the oversampling parameter are such that H\kappa and \log (\kappa )/\ell fall below some generic constants and if the cell problems are solved sufficiently accurately on some finer scale of discretization, then the method is stable and its error is proportional to H. Pollution effects are eliminated in this regime.
Sprache
Englisch
Identifikatoren
ISSN: 0025-5718
eISSN: 1088-6842
DOI: 10.1090/mcom/3156
Titel-ID: cdi_crossref_primary_10_1090_mcom_3156
Format
–
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von bX