Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 17

Details

Autor(en) / Beteiligte
Titel
A TOPAS model for lens-based proton radiography
Ist Teil von
  • Biomedical physics & engineering express, 2023-11, Vol.9 (6), p.65026
Ort / Verlag
United Kingdom: IOP Publishing
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Abstract Objective. Proton Radiography can be used in conjunction with proton therapy for patient positioning, real-time estimates of stopping power, and adaptive therapy in regions with motion. The modeling capability shown here can be used to evaluate lens-based radiography as an instantaneous proton-based radiographic technique. The utilization of user-friendly Monte Carlo program TOPAS enables collaborators and other users to easily conduct medical- and therapy- based simulations of the Los Alamos Neutron Science Center (LANSCE). The resulting transport model is an open-source Monte Carlo package for simulations of proton and heavy ion therapy treatments and concurrent particle imaging. Approach. The four-quadrupole, magnetic lens system of the 800-MeV proton beamline at LANSCE is modeled in TOPAS. Several imaging and contrast objects were modelled to assess transmission at energies from 230–930 MeV and different levels of particle collimation. At different proton energies, the strength of the magnetic field was scaled according to βγ, the inverse product of particle relativistic velocity and particle momentum. Main results. Materials with high atomic number, Z, (gold, gallium, bone-equivalent) generated more contrast than materials with low-Z (water, lung-equivalent, adipose-equivalent). A 5-mrad collimator was beneficial for tissue-to-contrast agent contrast, while a 10-mrad collimator was best to distinguish between different high-Z materials. Assessment with a step-wedge phantom showed water-equivalent path length did not scale directly according to predicted values but could be mapped more accurately with calibration. Poor image quality was observed at low energies (230 MeV), but improved as proton energy increased, with sub-mm resolution at 630 MeV. Significance. Proton radiography becomes viable for shallow bone structures at 330 MeV, and for deeper structures at 630 MeV. Visibility improves with use of high-Z contrast agents. This modality may be particularly viable at carbon therapy centers with accelerators capable of delivering high energy protons and could be performed with carbon therapy.
Sprache
Englisch
Identifikatoren
ISSN: 2057-1976
eISSN: 2057-1976
DOI: 10.1088/2057-1976/ad015b
Titel-ID: cdi_crossref_primary_10_1088_2057_1976_ad015b

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX