Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 2798
Bioinspiration & biomimetics, 2022-11, Vol.17 (6), p.66008
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Get a grip: inward dactyl motions improve efficiency of sideways-walking gait for an amphibious crab-like robot
Ist Teil von
  • Bioinspiration & biomimetics, 2022-11, Vol.17 (6), p.66008
Ort / Verlag
IOP Publishing
Erscheinungsjahr
2022
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Abstract Crabs are adept at traversing natural terrains that are challenging for mobile robots. Curved dactyls are a characteristic feature that engage terrain in order to resist wave forces in surf zones. Inward gripping motions at the onset of the stance could increase stability. Here, we add inward gripping motions to the foot trajectories of walking gaits to determine the energetic costs and speed for our 12 degree of freedom (DOF) crab-like robot, Sebastian. Specifically, we compared two gaits in which the step size (stance length) was the same, but the swing trajectories were either triangular (to minimize trajectory length) or quadrilateral (in which the leg deliberately oversteps in order to perform a distributed inward grip). The resulting gripping quadrilateral gait significantly outperformed the nongripping triangular gait on diverse terrains (hard linoleum, soft mats, and underwater sand), providing between 15% and 34% energy savings. Using this gait eliminates the advantage of spherical end effectors for slip reduction on hard linoleum, which may lead to a better understanding of how to use crab-like morphology for more efficient locomotion. Finally, we subjected the walking robot to lab-generated waves with a wave height approximately 166% of the dactyl length. Both gaits enabled the robot to walk undisturbed by the waves. Taken together, these results suggest that impact trajectory will be key for future amphibious robots. Future work can provide a deeper understanding of the relationships between dactyls, gaits, and substrates in biology and robots.
Sprache
Englisch
Identifikatoren
ISSN: 1748-3182
eISSN: 1748-3190
DOI: 10.1088/1748-3190/ac8710
Titel-ID: cdi_crossref_primary_10_1088_1748_3190_ac8710

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX