Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Bayesian reasoning machine on a magneto-tunneling junction network
Ist Teil von
  • Nanotechnology, 2020-11, Vol.31 (48), p.484001-484001
Ort / Verlag
IOP Publishing
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The recent trend in adapting ultra-energy-efficient (but error-prone) nanomagnetic devices to non-Boolean computing and information processing (e.g. stochastic/probabilistic computing, neuromorphic, belief networks, etc) has resulted in rapid strides in new computing modalities. Of particular interest are Bayesian networks (BN) which may see revolutionary advances when adapted to a specific type of nanomagnetic devices. Here, we develop a novel nanomagnet-based computing substrate for BN that allows high-speed sampling from an arbitrary Bayesian graph. We show that magneto-tunneling junctions (MTJs) can be used for electrically programmable 'sub-nanosecond' probability sample generation by co-optimizing voltage-controlled magnetic anisotropy and spin transfer torque. We also discuss that just by engineering local magnetostriction in the soft layers of MTJs, one can stochastically couple them for programmable conditional sample generation as well. This obviates the need for extensive energy-inefficient hardware like OP-AMPS, gates, shift-registers, etc to generate the correlations. Based on the above findings, we present an architectural design and computation flow of the MTJ network to map an arbitrary Bayesian graph where we develop circuits to program and induce switching and interactions among MTJs. Our discussed framework can lead to a new generation of stochastic computing hardware for various other computing models, such as stochastic programming and Bayesian deep learning. This can spawn a novel genre of ultra-energy-efficient, extremely powerful computing paradigms, which is a transformational advance.
Sprache
Englisch
Identifikatoren
ISSN: 0957-4484
eISSN: 1361-6528
DOI: 10.1088/1361-6528/abae97
Titel-ID: cdi_crossref_primary_10_1088_1361_6528_abae97

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX