Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 17

Details

Autor(en) / Beteiligte
Titel
Correction for 'artificial' electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung
Ist Teil von
  • Physics in medicine & biology, 2013-06, Vol.58 (12), p.4157-4174
Ort / Verlag
England: IOP Publishing
Erscheinungsjahr
2013
Quelle
MEDLINE
Beschreibungen/Notizen
  • Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (−1000 HU). Similarly, CBCT data in a plastic lung phantom were reduced by 200 HU compared with known CT number values. For the three patients, dose results using the CBCT number data registered with PCT showed a prescription dose reduction ranging from 4 to 13% (D95 = 47 Gy). Therefore, accurate determination of lung density, especially for very low lung density (<0.2 g cm−3) is essential, but difficult to achieve using the CBCT data. Applying corrective techniques (1) and (2) to CBCT patient data produced unacceptable dose differences. For one typical VMAT SBRT patient, the D95 for the corrected CBCT and BCT image-based plans differed by −4% (D95 = 52 Gy) and 9% (D95 = 59 Gy) compared to the co-registered PCT image-based plan. However, corrective technique (3) produced negligible dose differences comparing LCT and PCT image-based plans. With regard to implementing on-line DART, dose errors must be minimized because they affect re-optimization decisions, and prevent accurate accumulation of the dose distribution.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX