Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Testosterone inhibits growth in juvenile male eastern fence lizards (Sceloporus undulatus): implications for energy allocation and sexual size dimorphism
Ist Teil von
Physiological and biochemical zoology, 2005-07, Vol.78 (4), p.531-545
Ort / Verlag
United States
Erscheinungsjahr
2005
Quelle
MEDLINE
Beschreibungen/Notizen
In the eastern fence lizard, Sceloporus undulatus, female-larger sexual size dimorphism develops because yearling females grow faster than males before first reproduction. This sexual growth divergence coincides with maturational increases in male aggression, movement, and ventral coloration, all of which are influenced by the sex steroid testosterone (T). These observations suggest that male growth may be constrained by energetic costs of activity and implicate T as a physiological regulator of this potential trade-off. To test this hypothesis, we used surgical castration and subsequent administration of exogenous T to alter the physiological and behavioral phenotypes of field-active males during the period of sexual growth divergence. As predicted, T inhibited male growth, while castration promoted long-term growth. Males treated with T also exhibited increased daily activity period, movement, and home range area. Food consumption did not differ among male treatments or sexes, suggesting that the inhibitory effects of T on growth are mediated by patterns of energy allocation rather than acquisition. On the basis of estimates derived from published data, we conclude that the energetic cost of increased daily activity period following T manipulation is sufficient to explain most (79%) of the associated reduction in growth. Further, growth may have been constrained by additional energetic costs of increased ectoparasite load following T manipulation. Similar studies of the proximate behavioral, ecological, and physiological mechanisms involved in growth regulation should greatly improve our understanding of sexual size dimorphism.