Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 65

Details

Autor(en) / Beteiligte
Titel
Unlocking the potential of big data to support tactical performance analysis in professional soccer: A systematic review
Ist Teil von
  • European journal of sport science, 2021-04, Vol.21 (4), p.481-496
Ort / Verlag
England: Routledge
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • In professional soccer, increasing amounts of data are collected that harness great potential when it comes to analysing tactical behaviour. Unlocking this potential is difficult as big data challenges the data management and analytics methods commonly employed in sports. By joining forces with computer science, solutions to these challenges could be achieved, helping sports science to find new insights, as is happening in other scientific domains. We aim to bring multiple domains together in the context of analysing tactical behaviour in soccer using position tracking data. A systematic literature search for studies employing position tracking data to study tactical behaviour in soccer was conducted in seven electronic databases, resulting in 2338 identified studies and finally the inclusion of 73 papers. Each domain clearly contributes to the analysis of tactical behaviour, albeit in - sometimes radically - different ways. Accordingly, we present a multidisciplinary framework where each domain's contributions to feature construction, modelling and interpretation can be situated. We discuss a set of key challenges concerning the data analytics process, specifically feature construction, spatial and temporal aggregation. Moreover, we discuss how these challenges could be resolved through multidisciplinary collaboration, which is pivotal in unlocking the potential of position tracking data in sports analytics.
Sprache
Englisch
Identifikatoren
ISSN: 1746-1391
eISSN: 1536-7290
DOI: 10.1080/17461391.2020.1747552
Titel-ID: cdi_crossref_primary_10_1080_17461391_2020_1747552

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX