Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Optimal Permutation Recovery in Permuted Monotone Matrix Model
Ist Teil von
Journal of the American Statistical Association, 2021, Vol.116 (535), p.1358-1372
Ort / Verlag
United States: Taylor & Francis
Erscheinungsjahr
2021
Quelle
Taylor & Francis
Beschreibungen/Notizen
Motivated by recent research on quantifying bacterial growth dynamics based on genome assemblies, we consider a permuted monotone matrix model
, where the rows represent different samples, the columns represent contigs in genome assemblies and the elements represent log-read counts after preprocessing steps and Guanine-Cytosine (GC) adjustment. In this model, Θ is an unknown mean matrix with monotone entries for each row, Π is a permutation matrix that permutes the columns of Θ, and Z is a noise matrix. This article studies the problem of estimation/recovery of Π given the observed noisy matrix Y. We propose an estimator based on the best linear projection, which is shown to be minimax rate-optimal for both exact recovery, as measured by the 0-1 loss, and partial recovery, as quantified by the normalized Kendall's tau distance. Simulation studies demonstrate the superior empirical performance of the proposed estimator over alternative methods. We demonstrate the methods using a synthetic metagenomics dataset of 45 closely related bacterial species and a real metagenomic dataset to compare the bacterial growth dynamics between the responders and the nonresponders of the IBD patients after 8 weeks of treatment.
Supplementary materials
for this article are available online.