Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 98
Geomicrobiology journal, 2021-01, Vol.38 (1), p.66-86
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Tracing the Early Emergence of Microbial Sulfur Metabolisms
Ist Teil von
  • Geomicrobiology journal, 2021-01, Vol.38 (1), p.66-86
Ort / Verlag
New York: Taylor & Francis
Erscheinungsjahr
2021
Quelle
Taylor & Francis Journals Auto-Holdings Collection
Beschreibungen/Notizen
  • Hydrogen sulfide (nH 2 S) and sulfur oxide (SO n ; n = 1, 2, 3) gases in early Earth's globally anoxic atmosphere were subjected to gas-phase chemical transformations by UV light. A principal photolysis pathway at that time produced elemental sulfur aerosols with mass-independently fractionated (MIF) isotopic values carrying variable minor isotope ( 33 S, 36 S) compositions. These rained into the sulfate-deficient Archean (ca. 3.85-2.5 Ga) oceans to react with [Fe 2+ ] aq and form sedimentary sulfides. The MIF-bearing sulfides were incorporated into Archean sediments, including banded iron formations (BIF). Such aerosols may also have fueled microbial sulfur metabolisms, and thus are traceable by the MIF sulfur isotopes. Yet, data show that before ∼3.5 Ga mass-dependent 34 S/ 32 S values in Early Archean sediments tend to fall within a narrow (±0.1%) range even as they carry mass-independent values. By about 3.5 Ga, 34 S/ 32 S values show much greater changes (>1%) in range congruent with microbial metabolic processing. Here, we trace probable pathways of elemental sulfur aerosols into Archean sediments, and couple our study with analysis of the evolutionary relationships of enzymes involved in sulfur metabolism to explain the observed trends. Our model explains why elemental sulfur aerosols were apparently not utilized by the Eoarchean (pre-3.65 Ga) biosphere even though an immediate precursor to the required enzyme may have already been present. Highlights Evolution of microbial sulfur metabolisms is tracked by multiple sulfur isotopes Alkaline hydrothermal vents were an abode for early microbial life Sulfite detoxification prompted anaerobic respiration Reversal of respiratory electron transport chain (ETC) stimulated photothiotrophy Surplus e- acceptors permitted the emergence of elemental sulfur reduction

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX