Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Association Schemes and Directed Graphs Determined by Orbitals of General Linear Groups Over Finite Chain Rings
Ist Teil von
Communications in algebra, 2010-12, Vol.39 (1), p.220-236
Ort / Verlag
Taylor & Francis Group
Erscheinungsjahr
2010
Quelle
Taylor & Francis Journals Auto-Holdings Collection
Beschreibungen/Notizen
Let R be a finite commutative chain ring, 1 ≤ k ≤ n − 1,
the set of right invertible k × n matrices, and GL
n
(R) the general linear group of degree n over R, respectively. It is clear that Q ↦ QU (
, U ∈ GL
n
(R)) is a transitive action on
and induces the diagonal action of GL
n
(R) on
defined by (Q
1
, Q
2
)U = (Q
1
U, Q
2
U) for
and U ∈ GL
n
(R), which are then subdivided into orbits under the action of GL
n
(R). First, we investigate the three questions:
(i)
How should the orbits be described? (ii) How many orbits are there?
(iii)
What are the lengths of the orbits? Then we compute parameters of the association scheme on
and give precisely the structures of directed graphs determined by the orbits of diagonal action of GL
n
(R) on
.