Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 462
Applied physics letters, 2023-02, Vol.122 (6)
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Machine learning enables robust prediction of thermal boundary conductance of 2D substrate interfaces
Ist Teil von
  • Applied physics letters, 2023-02, Vol.122 (6)
Ort / Verlag
Melville: American Institute of Physics
Erscheinungsjahr
2023
Quelle
AIP Journals
Beschreibungen/Notizen
  • Two-dimensional van der Waals (vdW) materials exhibit a broad palette of unique and superlative properties, including high electrical and thermal conductivities, paired with the ability to exfoliate or grow and transfer single layers onto a variety of substrates thanks to the relatively weak vdW interlayer bonding. However, the same vdW bonds also lead to relatively low thermal boundary conductance (TBC) between the 2D layer and its 3D substrate, which is the main pathway for heat removal and thermal management in devices, leading to a potential thermal bottleneck and dissipation-driven performance degradation. Here, we use first-principles phonon dispersion with our 2D–3D Boltzmann phonon transport model to compute the TBC of 156 unique 2D/3D interface pairs, many of which are not available in the literature. We then employ machine learning to develop streamlined predictive models, of which a neural network and a Gaussian process display the highest predictive accuracy (RMSE < 5 MW m−2 K−1 and R 2 > 0.99) on the complete descriptor set. Then we perform sensitivity analysis to identify the most impactful descriptors, consisting of the vdW spring coupling constant, 2D thermal conductivity, ZA phonon bandwidth, the ZA phonon resonance gap, and the frequency of the first van Hove singularity or Boson peak. On that reduced set, we find that a decision-tree algorithm can make accurate predictions (RMSE < 20 MW m−2 K−1 and R 2 > 0.9) on materials it has not been trained on by performing a transferability analysis. Our model allows optimal selection of 2D-substrate pairings to maximize heat transfer and will improve thermal management in future 2D nanoelectronics.
Sprache
Englisch
Identifikatoren
ISSN: 0003-6951
eISSN: 1077-3118
DOI: 10.1063/5.0142105
Titel-ID: cdi_crossref_primary_10_1063_5_0142105

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX