Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 45

Details

Autor(en) / Beteiligte
Titel
Injectable extracellular matrix-mimetic hydrogel based on electrospun Janus fibers
Ist Teil von
  • Materials horizons, 2024-04, Vol.11 (8), p.1944-1956
Ort / Verlag
England: Royal Society of Chemistry
Erscheinungsjahr
2024
Quelle
MEDLINE
Beschreibungen/Notizen
  • To date, the reported injectable hydrogels have failed to mimic the fibrous architecture of the extracellular matrix (ECM), limiting their biological effects on cell growth and phenotype. Additionally, they lack the micro-sized pores present within the ECM, which is unfavorable for the facile transport of nutrients and waste. Herein, an injectable ECM-mimetic hydrogel (IEMH) was fabricated by shortening and dispersing Janus fibers capable of self-curling at body temperature into pH 7.4 phosphate buffer solution. The IEMH could be massively prepared through a side-by-side electrospinning process combined with ultraviolet irradiation. The IEMHs with only 5 wt% fibers could undergo sol-gel transition at body temperature to become solid gels with desirable stability, sturdiness, and elasticity and self-healing ability. In addition, they possessed notable pseudoplasticity, which is beneficial to injection at room temperature. The results obtained from characterization analysis via scanning electron microscopy, total internal reflection fluorescence microscopy, nuclear magnetic resonance spectroscopy, and Fourier-transform infrared spectroscopy indicate that their sol-gel transition under physiological conditions stems from the synergistic action of the tight entanglements between thermally-induced self-curling fibers and the hydrophobic interaction between the fibers. An MTT assay using C2C12 myoblast cells was performed to examine the in vitro cytotoxicity of IEMHs for biomedical applications, and the cell viability was found to be more than 95%. To date, the reported injectable hydrogels have failed to mimic the fibrous architecture of the extracellular matrix (ECM), limiting their biological effects on cell growth and phenotype.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX