Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 158

Details

Autor(en) / Beteiligte
Titel
Boosting the electrocatalytic hydrogen evolution and sodium-storage properties of Co 9 S 8 nanoparticles via encapsulation with nitrogen-doped few-layer graphene networks
Ist Teil von
  • Sustainable energy & fuels, 2021-09, Vol.5 (18), p.4618-4627
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Cobalt sulfides have attracted much attention as multifunctional electrocatalysts to trigger important reactions, for example, hydrogen evolution, oxygen evolution, and oxygen reduction reactions, and as electrodes for lithium or sodium ion storage. Nevertheless, the delivery of cobalt sulfide structures with high performance with long-term stability is still a challenge. In the current work reported here, via employing a metal–organic framework (MOF) as the starting material, a simple oxygen-assisted etching strategy to synthesize Co 9 S 8 nanoparticles coated with N-doped few-layer graphene (CS@NFLG) was developed. Microstructure studies show that the graphene layer is doped with the nitrogen element and forms a continuous three-dimensional (3D) conductive network, which protects the inner Co 9 S 8 nanoparticles in the harsh reaction environment and modulates the electronic interactions with the Co 9 S 8 particle surface. Because of the advantages of the unique microstructure, CS@NFLG possesses excellent HER activity in an acidic medium (0.5 M H 2 SO 4 ) at a low onset overpotential of 50 mV with a small Tafel slope of 73 mV dec −1 . Meanwhile, the sample presents remarkable sodium storage properties in terms of a high reversible capacity, good rate capabilities, and good stability. In particular, the CS@NFLG electrode delivers a specific capacity of 505 mA h g −1 after 100 cycles at 0.5 A g −1 . Moreover, the CS@NFLG electrode still maintains a high specific capacity of 442.3 mA h g −1 after 400 cycles at a high current density of 1.2 A g −1 . This work shows that nanoscale “top-down” etching from the bottom is a promising route for the fine modulation of the structure and composition at the electronic and atomic scales, thus showing great prospects for use in energy storage and conversion applications.
Sprache
Englisch
Identifikatoren
ISSN: 2398-4902
eISSN: 2398-4902
DOI: 10.1039/D1SE00829C
Titel-ID: cdi_crossref_primary_10_1039_D1SE00829C
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX