Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers
Ist Teil von
Journal of materials chemistry. A, Materials for energy and sustainability, 2020-10, Vol.8 (39), p.2677-2686
Ort / Verlag
Cambridge: Royal Society of Chemistry
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Earth-abundant elements are highly desirable electrocatalysts for artificial N
2
fixation (NRR). However, most earth-abundant elements are inactive for the NRR, and the competitive hydrogen evolution reaction (HER) causes inferior faradaic efficiency. Thus, facile modification methods to transform an NRR-unfavorable electrocatalyst into its NRR-favorable counterpart are highly demanded. Herein, we present an efficient hydrophobic carbon layer incorporation strategy on tin monosulfide (SnS@C) to greatly boost the NRR activity of SnS. The hydrophobic carbon layer can limit proton availability at the electrode surface while integrating the advantages of strong N
2
adsorption and better conductivity that synergistically improve the NRR performance. Specifically, SnS@C delivers a high faradaic efficiency of 14.56% and NH
3
yield of 7.95 × 10
−11
mol s
−1
cm
−2
(24.33 μg
NH
3
h
−1
mg
cat
−1
) at −0.5 V
versus
the reversible hydrogen electrode. It also exhibits durable stability for consecutive electrolysis over 18 h. Adequate control and
15
N isotopic labeling experiments confirm the reliability of N sources. Density functional theory calculations reveal that the superior activity is attributed to the redistribution and bias of electrons between the SnS and carbon-layer interface. This work highlights that the simple hydrophobic carbon layer incorporation strategy could guide the design and modification of advanced NRR catalysts.
We report that incorporating a hydrophobic carbon layer can greatly boost the NRR activity of SnS. The C layer limits proton availability at the electrode surface while integrating the advantages of strong N
2
adsorption, better conductivity, and improved NRR performance.