Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 390
Journal of materials chemistry. A, Materials for energy and sustainability, 2019-12, Vol.7 (47), p.26818-26828
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Controlled building of mesoporous MoS 2 @MoO 2 -doped magnetic carbon sheets for superior potassium ion storage
Ist Teil von
  • Journal of materials chemistry. A, Materials for energy and sustainability, 2019-12, Vol.7 (47), p.26818-26828
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Molybdenum disulfide (MoS 2 ) has attracted considerable attention as a candidate for potassium ion storage. However, the MoS 2 anode material is limited by its poor electron conductivity, poor structural stability due to large volume variation, growth of potassium dendrites and sluggish chemical kinetics. The combination of optimizing phase morphology, elemental composition, and surface nanostructure is effective for solving these problems. Herein, Fe was first encapsulated into the porous biomass-derived carbon during the Fe-catalysed post-annealing process. Subsequently, MoS 2 @MoO 2 was well wrapped into the porous N-doped carbon matrix (CN) and the prepared MoS 2 @MoO 2 @Fe@CN was evaluated as an anode material for potassium ion batteries (KIBs). The growth mechanism of MoS 2 @MoO 2 @Fe@CN was thoroughly studied and the synthesis conditions were further explored. The good encapsulation of metallic Fe within the carbon framework and its intimate integration with the heterojunction of MoS 2 @MoO 2 facilitate the transportation of electrons and ions, supplying favourable mass transfer. The low energy barrier for K + insertion/extraction into the Mo–S–O and N–Mo–O channels is achieved primarily because of the finely incorporated heterojunction with elevated electron densities. Density functional theory (DFT) demonstrates that the internal electrical field guides the electron transfer from MoO 2 to MoS 2 at the interface, decreasing the K + adsorption energy and migration barrier. This work supplies a new route to synthesize a heterojunction to enhance both the electrochemical performance and stability of MoS 2 -based electrode material for effective energy storage.
Sprache
Englisch
Identifikatoren
ISSN: 2050-7488
eISSN: 2050-7496
DOI: 10.1039/C9TA09919K
Titel-ID: cdi_crossref_primary_10_1039_C9TA09919K
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX