Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 24
The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2003-04, Vol.107 (15), p.2667-2673
2003

Details

Autor(en) / Beteiligte
Titel
Spectroscopy of Hydrothermal Reactions 23:  The Effect of OH Substitution on the Rates and Mechanisms of Decarboxylation of Benzoic Acid
Ist Teil von
  • The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2003-04, Vol.107 (15), p.2667-2673
Ort / Verlag
American Chemical Society
Erscheinungsjahr
2003
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The decarboxylation rates of aqueous benzoic acid and 12 mono-, di-, and trihydroxy derivatives of benzoic acid were compared by using spectra from a flow reactor FTIR spectroscopy cell operating at 275 bar in the temperature range of 120−330 °C. Each compound was investigated at its natural pH and as the neutral acid (pH = 1.3−1.5). The decarboxylation reactions followed the first-order (or pseudo-first-order) rate law enabling the rate constants and corresponding Arrhenius parameters of the undissociated acids to be obtained. Based on the half-lives of the reactions at 200 °C, the thermal stability of the OH substituted benzoic acids follow the order:  2,4,6 > 2,4 > 2,3,4 > 2,6 > 2,5 > 2,3 > 3,4,5 > 2 > 3,4 > 4. Solutions of 3,5-dihydroxybenzoic and 3-hydroxybenzoic acids and unsubstituted benzoic acid had the highest thermal stability, whereas no decarboxylation was observed up to 330 °C at a residence time of about 45s. In general, the rate order is multiple ortho, para-OH substitution > ortho substitution > para substitution > meta substitution. The range of activation energies for the decarboxylation of OH substituted benzoic acids is 90−97 kJ/mol, and the rate differences are controlled mainly by activation entropy. The transition state structures were determined using density functional theory. Starting from the anti carboxylic hydrogen conformers in the gas phase, the activation energies to the transition state structures having the four-member C−C(O)-O−H ring are 213−260 kJ/mol using B3LYP/6-31G//B3LYP/6-31G and 202−246 kJ/mol using B3LYP/6-31+G(d,p)//B3LYP/6-31G(d). Incorporation of one water molecule forms a six-member cyclic structure, which dramatically reduces the activation energy by about 120−130 kJ/mol using B3LYP/6-31G//B3LYP/6-31G and by about 75 kJ/mol using B3LYP/6-31+G(d,p)//B3LYP/6-31G(d). In the water-catalyzed transition state structure, the water molecule acts as a bridge linked by two hydrogen bonds which enables concerted proton transfer and C−(CO2H) bond cleavage to occur. Although the calculated activation energy approximately follows the trend of the experimental half-lives, the experimental activation entropy appears to dominate in determining the rates.
Sprache
Englisch
Identifikatoren
ISSN: 1089-5639
eISSN: 1520-5215
DOI: 10.1021/jp0220231
Titel-ID: cdi_crossref_primary_10_1021_jp0220231
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX