Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 10

Details

Autor(en) / Beteiligte
Titel
Tuning the Structure, Conductivity, and Wettability of Laser-Induced Graphene for Multiplexed Open Microfluidic Environmental Biosensing and Energy Storage Devices
Ist Teil von
  • ACS nano, 2022-01, Vol.16 (1), p.15-28
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2022
Quelle
MEDLINE
Beschreibungen/Notizen
  • The integration of microfluidics and electrochemical cells is at the forefront of emerging sensors and energy systems; however, a fabrication scheme that can create both the microfluidics and electrochemical cells in a scalable fashion is still lacking. We present a one-step, mask-free process to create, pattern, and tune laser-induced graphene (LIG) with a ubiquitous CO2 laser. The laser parameters are adjusted to create LIG with different electrical conductivity, surface morphology, and surface wettability without the need for postchemical modification. Such definitive control over material properties enables the creation of LIG-based integrated open microfluidics and electrochemical sensors that are capable of dividing a single water sample along four multifurcating paths to three ion selective electrodes (ISEs) for potassium (K+), nitrate (NO3 –), and ammonium (NH4 +) monitoring and to an enzymatic pesticide sensor for organophosphate pesticide (parathion) monitoring. The ISEs displayed near-Nernstian sensitivities and low limits of detection (LODs) (10–5.01 M, 10–5.07 M, and 10–4.89 M for the K+, NO3 –, and NH4 + ISEs, respectively) while the pesticide sensor exhibited the lowest LOD (15.4 pM) for an electrochemical parathion sensor to date. LIG was also specifically patterned and tuned to create a high-performance electrochemical micro supercapacitor (MSC) capable of improving the power density by 2 orders of magnitude compared to a Li-based thin-film battery and the energy density by 3 orders of magnitude compared to a commercial electrolytic capacitor. Hence, this tunable fabrication approach to LIG is expected to enable a wide range of real-time, point-of-use health and environmental sensors as well as energy storage/harvesting modules.
Sprache
Englisch
Identifikatoren
ISSN: 1936-0851
eISSN: 1936-086X
DOI: 10.1021/acsnano.1c04197
Titel-ID: cdi_crossref_primary_10_1021_acsnano_1c04197

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX