Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 4493

Details

Autor(en) / Beteiligte
Titel
Structure–Property-Performance Relationship of Ultrathin Pd–Au Alloy Catalyst Layers for Low-Temperature Ethanol Oxidation in Alkaline Media
Ist Teil von
  • ACS applied materials & interfaces, 2019-07, Vol.11 (28), p.24919-24932
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2019
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Pd-containing alloys are promising materials for catalysis. Yet, the relationship of the structure–property performance strongly depends on their chemical composition, which is currently not fully resolved. Herein, we present a physical vapor deposition methodology for developing Pd x Au1–x alloys with fine control over the chemical composition. We establish direct correlations between the composition and these materials’ structural and electronic properties with its catalytic activity in an ethanol (EtOH) oxidation reaction. By combining X-ray diffraction (XRD) and X-ray photelectron spectroscopy (XPS) measurements, we validate that the Pd content within both bulk and surface compositions can be finely controlled in an ultrathin-film regime. Catalytic oxidation of EtOH on the Pd x Au1–x electrodes presents the largest forward-sweeping current density for x = 0.73 at ∼135 mA cm–2, with the lowest onset potential and largest peak activity of 639 A gPd –1 observed for x = 0.58. Density functional theory (DFT) calculations and XPS measurements demonstrate that the valence band of the alloys is completely dominated by Pd particularly near the Fermi level, regardless of its chemical composition. Moreover, DFT provides key insights into the Pd x Au1–x ligand effect, with relevant chemisorption activity descriptors probed for a large number of surface arrangements. These results demonstrate that alloys can outperform pure metals in catalytic processes, with fine control of the chemical composition being a powerful tuning knob for the electronic properties and, therefore, the catalytic activity of ultrathin Pd x Au1–x catalysts. Our high-throughput experimental methodology, in connection with DFT calculations, provides a unique foundation for further materials’ discovery, including machine-learning predictions for novel alloys, the development of Pd-alloyed membranes for the purification of reformate gases, binder-free ultrathin electrocatalysts for fuel cells, and room temperature lithography-based development of nanostructures for optically driven processes.
Sprache
Englisch
Identifikatoren
ISSN: 1944-8244
eISSN: 1944-8252
DOI: 10.1021/acsami.9b01389
Titel-ID: cdi_crossref_primary_10_1021_acsami_9b01389
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX