Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 27

Details

Autor(en) / Beteiligte
Titel
In Situ Surface Modification of Microfluidic Blood–Brain-Barriers for Improved Screening of Small Molecules and Nanoparticles
Ist Teil von
  • ACS applied materials & interfaces, 2020-12, Vol.12 (51), p.56753-56766
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2020
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Here, we have developed and evaluated a microfluidic-based human blood–brain-barrier (μBBB) platform that models and predicts brain tissue uptake of small molecule drugs and nanoparticles (NPs) targeting the central nervous system. By using a photocrosslinkable copolymer that was prepared from monomers containing benzophenone and N-hydroxysuccinimide ester functional groups, we were able to evenly coat and functionalize μBBB chip channels in situ, providing a covalently attached homogenous layer of extracellular matrix proteins. This novel approach allowed the coculture of human endothelial cells, pericytes, and astrocytes and resulted in the formation of a mimic of cerebral endothelium expressing tight junction markers and efflux proteins, resembling the native BBB. The permeability coefficients of a number of compounds, including caffeine, nitrofurantoin, dextran, sucrose, glucose, and alanine, were measured on our μBBB platform and were found to agree with reported values. In addition, we successfully visualized the receptor-mediated uptake and transcytosis of transferrin-functionalized NPs. The BBB-penetrating NPs were able to target glioma cells cultured in 3D in the brain compartment of our μBBB. In conclusion, our μBBB was able to accurately predict the BBB permeability of both small molecule pharmaceuticals and nanovectors and allowed time-resolved visualization of transcytosis. Our versatile chip design accommodates different brain disease models and is expected to be exploited in further BBB studies, aiming at replacing animal experiments.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX