Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 52

Details

Autor(en) / Beteiligte
Titel
On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries
Ist Teil von
  • Chemistry of materials, 2021-02, Vol.33 (4), p.1380-1393
Ort / Verlag
American Chemical Society
Erscheinungsjahr
2021
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • All-solid-state batteries promise to enable lithium metal anodes and outperform state-of-the-art lithium-ion battery technology. To achieve high battery capacity, utilization of the active material in the cathode must be maximized. Carbon-based conductive additives are known to improve the capacity and rate performance of electrode composites. However, their influence on cathode composites in all-solid-state batteries is yet not fully understood. Here, we study the influence of several carbon additives with different morphologies and surface areas on the performance of an all-solid-state battery cell Li|β-Li3PS4|Li­(Ni0.6Co0.2Mn0.2)­O2/β-Li3PS4/carbon. Cycling tests and microstructure-resolved simulations show that higher utilization of the cathode active material can be achieved using fiber-shaped vapor-grown carbon additives, whereas particle-shaped carbons show a minor influence. Unfortunately, carbon additives generally lead to an accelerated capacity loss during cycling and an enhanced formation of solid electrolyte decomposition products. The latter was studied in more detail using cyclic voltammetry, X-ray photoelectron spectroscopy, and cycling experiments. The results show that carbon additives with a small surface area and a fiber-like morphology result in the lowest degree of decomposition. To completely overcome electrolyte degradation caused by the use of carbon additives, a protection concept is developed. A thin alumina coating with a few nanometers thickness was deposited on the carbon fibers by atomic layer deposition, which successfully prevents decomposition reactions, reduces long-term capacity fading, and leads to an enhanced overall all-solid-state battery performance.
Sprache
Englisch
Identifikatoren
ISSN: 0897-4756
eISSN: 1520-5002
DOI: 10.1021/acs.chemmater.0c04454
Titel-ID: cdi_crossref_primary_10_1021_acs_chemmater_0c04454
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX