Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 12

Details

Autor(en) / Beteiligte
Titel
Do temporal and spatial heterogeneity modulate biodiversity–functioning relationships in com-munities of methanotrophic bacteria?
Ist Teil von
  • Soil biology & biochemistry, 2023-10, Vol.185, p.109141, Article 109141
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2023
Link zum Volltext
Quelle
ScienceDirect Journals (5 years ago - present)
Beschreibungen/Notizen
  • Positive relationships between biodiversity functioning have been found in communities of plants but also of soil microbes. The beneficial effects of diversity are thought to be driven by niche partitioning among community members, which leads to more complete or more efficient community-level resource use through various mechanisms. An intriguing related question is whether environmentally more heterogeneous habitats provide a larger total niche space and support stronger diversity—functioning relationships because they harbor more species or allow species to partition the available niche space more efficiently. Here, we tested this hypothesis by assembling communities of 1, 2 or 4 methanotrophic isolates and exposing them to temporally (constant or diurnal temperature cycling) and structurally (one or two aggregate size classes) more heterogeneous conditions. In total, we incubated 396 microcosms for 41 days and found that more biodiverse communities consumed more methane (CH4) and tended to have a larger community size (higher pmoA copy numbers). Diurnal temperature cycling strongly reduced CH4 oxidation and growth, whereas soil aggregate composition and diversity had no detectable effect. Biodiversity effects varied greatly with the identity of the community members that were combined. With respect to community level CH4 consumption, strain interactions were positive or neutral but never negative, and could neither be explained by 14 structural and function traits we collected or by the observed competitive hierarchy among the strains. Overall, our results indicate that methanotrophic diversity promotes methanotrophic community functioning. The strains that performed best varied with environmental conditions, suggesting that a high biodiversity is important for maintaining methanotrophic functioning as environmental conditions fluctuate over time. •Mechanistic diallels were used to analyze interactions among methanotrophs.•CH4 consumption increased with methanotroph diversity.•Diversity-functioning relationships were not promoted by environmental heterogeneity.•Interactive effects of strains on CH4 consumption all were positive or neutral.•Contributions of strains to CH4 consumption did not follow competitive hierarchies.
Sprache
Englisch
Identifikatoren
ISSN: 0038-0717
eISSN: 1879-3428
DOI: 10.1016/j.soilbio.2023.109141
Titel-ID: cdi_crossref_primary_10_1016_j_soilbio_2023_109141

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX