Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Organic matter chemistry and bacterial community structure regulate decomposition processes in post-fire forest soils
Ist Teil von
  • Soil biology & biochemistry, 2021-09, Vol.160, p.108311, Article 108311
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Wildfires decrease forest aboveground biomass and have long-term legacy effects on carbon (C) stocks in soil via alterations of microbial communities and functions. However, the interactions between soil organic C (SOC) chemodiversity and bacterial communities that drive C decomposition remain unclear. Soils from two boreal forest sites, 3 months (S1) and 15 years (S2) after fire events, were incubated for 53 days to quantify the mineralization of sucrose (mimicking rhizodeposits, δ13C = −11.97‰) and SOC priming. To reveal SOC-bacterial interactions that regulate SOC decomposition, the isotopic abundance, SOC chemical composition (13C NMR), and associated bacterial community structure (16S rRNA gene sequencing) were analyzed. The best multivariate model (DISTLM) analysis indicated that aromatic C (phenolic-C and aryl-C) in S1 and di-O-alkyl C in S2 were the largest contributors to bacterial community structure. The co-occurrence network confirmed SOC-bacteria interactions, and revealed the highly co-occurrent groups, i.e. Paenibacillus in S1 and Bacillus in S2, both of which belong to the Firmicutes, correlated with recalcitrant C and labile C, respectively, and are potentially linked to decomposition. For example, Firmicutes (as well as Proteobacteria and Actinobacteria) were correlated with aryl-C and phenolic-C in S1 and highly correlated with SOC priming intensity. The limited C resources (enriched refractory components, i.e. phenolic substances) in S1 favored oligotrophs to outcompete other bacterial groups, which likely aided decomposition of more recalcitrant SOC via co-metabolisms. The slow decomposition of sucrose and large soil priming effects observed in S1 suggested a faster SOC turnover via bidirectional processes of additional sucrose-C gain and native soil-C loss. Collectively, changes in SOC chemistry were coupled with an altered bacterial community, and their interactions might further correlate to decomposition, with implications for C sequestration in the post-fire boreal forest soils. [Display omitted] •We investigated soil priming effects in post-fire forest soils.•Soil microbial diversity decreased with soil depth.•NMR and sequence analyses were utilized to understand C-microbe interactions.•Positive association between aromatic-C and Firmicutes was correlated to SOC loss.
Sprache
Englisch
Identifikatoren
ISSN: 0038-0717
eISSN: 1879-3428
DOI: 10.1016/j.soilbio.2021.108311
Titel-ID: cdi_crossref_primary_10_1016_j_soilbio_2021_108311

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX