Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 62

Details

Autor(en) / Beteiligte
Titel
Interactive effects of dung deposited onto urine patches on greenhouse gas fluxes from tropical pastures in Kenya
Ist Teil von
  • The Science of the total environment, 2021-03, Vol.761, p.143184, Article 143184
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2021
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Dung and urine patches on grasslands are hotspots of greenhouse gas (GHG) emissions in temperate regions, while its importance remains controversial for tropical regions as emissions seem to be lower. Here we investigated N2O, CH4 and CO2 emissions from urine and dung patches on tropical pastures in Kenya, thereby disentangling interactive and pure water, dung or urine effects. GHG fluxes were monitored with automated chambers for 42–59 days covering three seasons (short rainy season, long rainy season, dry season) for six treatments (Control; +1 L water; +1 kg dung; 1 L urine; 1 L water +1 kg dung; 1 L urine +1 kg dung). Cumulative CO2 emissions did not differ among treatments in any of the seasons. Water or urine addition alone did not affect CH4 fluxes, but these were elevated in all dung-related treatments. Scaled up on the total area covered, dung patches halve the CH4 sink strength of tropical pastures during the dry season, while during the rainy season they may turn tropical pastures into a small CH4 source. For N2O, both dung and urine alone and in combination stimulated emissions. While the N2O emission factor (EFN2O) from dung being constant across seasons, the EFN2O for urine was greater during the short rainy season than during the dry season. Combined application of urine + dung was additive on EFN2O. While the mean dung EFN2O in our study (0.06%) was similar to the IPCC Guidelines for National GHG Inventories EFN2O for dry climate (0.07%), the urine EFN2O we measured (0.03–0.25%) was lower than the IPCC value (0.32%). In addition, the IPCC Guidelines assume a urine-N: dung-N ratio of 0.66:0.34, which is higher than found for SSA (<0.50:0.50). Consequently, IPCC Guidelines still overestimate N2O emissions from excreta patches in SSA. [Display omitted] •CH4 emissions from dung patches may turn pastures from CH4 sinks to sources.•N2O emissions add up if dung is deposited onto urine patches.•The urine EFN2O for dry climate by IPCC 2019 (0.32%) is likely too high.•Split of N in urine and dung is lower as in IPCC further lowering the excreta EFN2O.
Sprache
Englisch
Identifikatoren
ISSN: 0048-9697
eISSN: 1879-1026
DOI: 10.1016/j.scitotenv.2020.143184
Titel-ID: cdi_crossref_primary_10_1016_j_scitotenv_2020_143184

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX