Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 78

Details

Autor(en) / Beteiligte
Titel
A deep-learning model for predicting spatiotemporal evolution in reactive fluidized bed reactor
Ist Teil von
  • Renewable energy, 2024-05, Vol.225, p.120245, Article 120245
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Detailed information of flow fields is of great significance for designing and optimizing multiphase flow systems. However, predicting spatiotemporal evolution of gas-solid flows using numerical simulation often requires a significant amount of computation and time. In this study, we proposed a 3D convolutional neural network for predicting reactive dense gas-solid flows. We first explored the design of model architecture and extensively evaluated the performance in terms of efficiency, accuracy, long-term prediction stability and generalizability for a non-reactive fluidized bed. Then we extended the method to a biomass fast pyrolysis process. The proposed model achieves real-time prediction, 3–4 orders of magnitude faster than CFD-DEM simulations. The surrogate model reasonably captures bubble-driven flow behaviors and effects of bubble on fast pyrolysis reactions. The predicted bubble characteristics, and time-averaged and RMS flow fields match well with the simulation results. Our approach exhibits excellent long-term stability and has good generalization capability to unseen fluidization velocities. To the best of our knowledge, this is the first time a neural network has been successfully applied to learn spatiotemporal evolution of reactive dense gas-solid flows.
Sprache
Englisch
Identifikatoren
ISSN: 0960-1481
DOI: 10.1016/j.renene.2024.120245
Titel-ID: cdi_crossref_primary_10_1016_j_renene_2024_120245

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX