Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 11

Details

Autor(en) / Beteiligte
Titel
Experimental investigation and numerical simulation of the combustion of flexible polyurethane foam with larger geometries
Ist Teil von
  • Polymer testing, 2020-01, Vol.81, p.106270, Article 106270
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2020
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Numerical modelling of the combustion of flexible polyurethane foam (FPUF) is challenging, as the structural collapse and shrinkage of the foam complicate its pyrolysis, and two fuel items are involved in the combustion. Two-layer pyrolysis models were established based on the bench-scale tests over the past decade, but the accuracy was limited when simulating the combustion of FPUF with larger geometries. To improve the accuracy of the numerical simulation, small-scale experiments were conducted to investigate the combustion of FPUF with a larger geometry. Firstly, numerical simulations using a two-layer pyrolysis model proposed in the most recent research were performed to simulate the combustion of FPUF in the small-scale experiments. It was found that the heat release rate (HRR) was over-predicted in the initial combustion stage. Subsequently, based on the analysis of the visual and measured data obtained from the small-scale experiments, a three-layer model was proposed to describe the pyrolysis of FPUF in flaming combustion. The three-layer model was validated with the comparison of the predicted and experimental data. The results indicate that the numerical simulation using the three-layer model has a better performance in replicating the combustion of FPUF under well-ventilated conditions. While, the capability of the three-layer model was limited when it was used to simulate the combustion of FPUF in under-ventilated conditions, as it is found that ventilation influences the HRR of FPUF to a significant extent. •A small scale experimental facility was designed to investigate the combustion of flexible polyurethane foam (FPUF).•The flow of condensed fuel obviously effects the combustion of FPUF with larger geometries.•A three-layer model was established to numerical simulate the combustion of FPUF.•The three-layer model can better simulate the combustion of FPUF.•Combustion of FPUF is also significantly influenced by the ventilation.
Sprache
Englisch
Identifikatoren
ISSN: 0142-9418
eISSN: 1873-2348
DOI: 10.1016/j.polymertesting.2019.106270
Titel-ID: cdi_crossref_primary_10_1016_j_polymertesting_2019_106270

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX