Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
In the present paper, we attempt to construct both the breather and rogue wave solutions to the focusing complex short pulse (fCSP) equation via the KP–Toda reduction method. Following a procedure of reducing the bilinear equations satisfied by tau functions of Kadomtsev–Petviashvili (KP)–Toda hierarchy to the ones of the fCSP equation with nonzero boundary condition, we first deduce the general breather solution of the fCSP equation starting from a specially arranged tau-function of the KP–Toda hierarchy, then we construct and prove the Nth order rogue wave solutions of the fCSP equation and express them in two different but equivalent forms of determinants. The dynamical behaviors of both the breather and rogue wave solutions are illustrated and analyzed.